
reenhancedProducts
Services
Blog
Newsletter Sign Up
👤 My AccountSupport

reenhancedProductsServicesBlogNewsletter Sign Up👤 My Account💳 Orders🗃 Downloads⛑ My Support Tickets🛒 Cart

Support

reenhanced
Software Automation

 Menu
ProductsServicesBlogNewsletter Sign Up👤 My Account💳 Orders🗃 Downloads⛑ My Support Tickets🛒 Cart

Support

Download Dynamics 365 Reports as a PDF with Power Automate

July 22, 2021byNick Hance

Download Dynamics 365 Reports as a PDF with Power Automate
July 22, 2021byNick Hance

Have you ever wanted to upload a Dynamics 365 Report to SharePoint? What about sending it via an email or embedding into Teams on demand? Watch the video or read and follow along in the article below to learn how you can use a Child Flow to get the PDF version of a Report you can use anywhere through Power Automate. The world is yours!

Step-by-step how to do this with full explanation. Read below for an illustrated guide.
Important: The guide here implements this as a child flow, which means you will be able to re-use the work we do today for any report. The only way to use child flows is by having them in a solution, so you’ll need to make sure you carefully follow the solution steps!

Step 1: Create a Solution

Child flows have special requirements, so we begin our tutorial with the creation of a solution. First, go to flow.microsoft.com and click on the solutions link from the left hand side navigation. Fill in the form and let’s keep moving. 💡 Pro-tip: All flows that use a child flow need to be in the same solution, so a good name for this is something like “Reporting Flows”

Step 2: Create a new flow

Add a cloud flow to your solution

And then set the trigger to Manually trigger a flow

After you have your trigger, you need to add 2 inputs to it, Report Name and Report XML

Then add a List Rows action from the Dataverse connector and configure it to lookup the report by the Report Name that you pass in during execution of your child flow.

This is now a valid flow! (Every flow needs at least one trigger and one action.) You can now smash the 💾 Save button in your flow and move on to the next step.

Step 3: Setup the Report Viewer

Our child flow works by doing everything that you would do inside of your web browser, but it’s stripped out to only the steps you need to take. One of the most critical steps is the Report Viewer page, that is, the page that shows you the report inside your web browser. This step does the work of creating the report and it’s the same page that shows you the report in your browser.

In other words, what this step is doing is creating the web-only version of your report. This has to happen before you can get the PDF version because the report needs to exist before it can exist as a PDF.

To make this step happen, we have to send a request like the browser. We do this using the HTTP with Azure AD connector, specifically the Invoke an HTTP request action.

In order to use this action, we need to authorize our connection. If you’re using Dynamics 365 online, you do this by grabbing your CRM url (including https://) and pasting it in for both Base Resource URL and Azure AD Resource URI

Once you’ve authorized, you’ll be able to setup your request. Configure it like this:

	Method	POST
	Url of the request	/CRMReports/rsviewer/reportviewer.aspx
	Headers	Content-Type: application/x-www-form-urlencoded
	Body of the request	id=report&iscustomreport=Custom Report&reportnameonsrs=Name on SRS&CRM_Filter=encodeUriComponent(ReportXML)&reporttypecode=Report Type

In the body, the tags are all Dynamic Values. Note you need to use a formula to encode the data for CRM_Filter
Step 4: Extract the PdfDownloadUrl from the Report Viewer page

If you run the flow that you’ve built so far, you’ll see that the HTTP Request that we just added returns a big, long HTML string. This string is the report in HTML format and if you were to look at it in a web browser, it would show you the report viewer.

If you look at the page source, deep inside a JavaScript function you can find the URL needed to download the Report as a PDF.

This JavaScript snippet is the secret string we need to extract. If we load it in a browser with correct authorization, a PDF appears!

Let’s extract the value for PdfDownloadUrl so we can load it into another request and get our PDF. We’ll do this in 3 parts.

Step 4.1: Figure out where the PdfDownloadUrl string starts

We need to add a Compose action with the following:

add(
 indexOf(
 HTTP - POST Report Viewer -> Body,
 '"PdfDownloadUrl":"'
),
 18
)

Note: The Body tag is from the action you added in step 3.

Step 4.2: Figure out how long the PdfDownloadUrl is

Add another Compose action with the following:

sub(
 indexOf(
 HTTP - POST Report Viewer -> Body,
 '","PdfPreviewUrl"'
),
 Step 4.1 -> outputs
)

Step 4.3: Extract and convert the PdfDownloadUrl from the body

In our final Compose action here, we will extract the string containing the URL we need to load.

replace(
 substring(
 HTTP - POST Report Viewer -> Body,
 Step 4.1 -> Outputs,
 Step 4.2 -> Outputs
),
 '\u0026',
 '&'
)

Step 5: Download the PDF

HECK YEAH! YOU ARE KICKING ASS! You’re now ready to make the final request that’s going to download the report as a PDF. Go you! You’re a Flow superstar if you’ve made it this far.

You need to add another Invoke an HTTP Request from the HTTP with Azure AD connector. Then all you have to do is send a GET request to the PdfDownloadUrl you extracted in Step 4.3.

GET that juicy PDF Report here. Paradise is within sight!

This is literally it. If you run this flow now, it will get the Report specified by name with the Report XML you sent over to it. But it’s not very useful to have a flow that doesn’t do anything, is it?

I promised you a reusable Child Flow, so let’s convert our work so far into something we can use.

Step 6: Use a variable to send the Report PDF data to our Parent Flow

We need to get our PDF data out of the loop that flow created for us when we looked at the Report, so let’s do a few things.

Step 6.1: Initialize a variable

Add an Initialize a variable action for a String somewhere near the top of your flow. You pick where it goes. Just somewhere underneath the trigger.

Step 6.2: Set the variable

After the PDF Download HTTP request, you need to assign the variable as an expression of dataUri(PDF Download Request -> Body)

Add this step below the request you created in step 5

Step 7: Respond to a PowerApp or flow

Add a final action all the way at the bottom of your flow using the + New Step button and select the action Respond to a PowerApp or flow.

Inside this, you’ll want to provide a name like Report PDF, and the value will be the variable you assigned in step 6.2.

How come I can’t find the Respond to a PowerApp or flow step?
This step is only visible if your flow is “solution-aware”, which means that you must have it created inside of a solution. If you skipped step 1, you’ll probably run into this.

The last step! This makes your flow work as a child flow!

If you’re up and running with the help of this post, we give you five stars!

⭐⭐⭐⭐⭐

Rating: 5 out of 5.

Would you like more help with this? Are you confused about Report XML or parent flows?

The video and article here will get you pretty far down the path. But what if it’s not far enough? Do you you want to do more amazing things? HAVE NO FEAR!

I’m super friendly and would love to help you with your flows. Just fill out the form below and I’ll get in touch with you. Together, we’ll go soooo far. Let’s chat!

	Do you have an idea we can help you with? Drop us a line here..

	Your email*

Enter your email address so we can contact you

Nick Hance

Posted on:
July 22, 2021

I'm a software project rescue specialist who has been rescuing failed software systems since 1999. President of Reenhanced.

42 posts

E-mail

Post author

Dynamics 365IdeasPower Automate

azure adchild flowsdynamics 365Dynamics 365 reportsexpressionsflowHTTP requestpdfPdfDownloadUrlpower automateReport viewervariable

After 3+ Weeks with No Updates, Power Automate Adds 6 New Connectors

Previous post

Data Extraction, Facial Recognition, Video Marketing, and Virus Protection, Oh My!

Next post

text

Welcome to reenhanced. While you are here, check out some of our best content and products:
	Power Platform in Plain English
	ODATA Cheat Sheet for Dynamics 365 and Common Data Service (CDS)
	How to fix Dynamics 365 File download apostrophe bug
	How to move files from Gravity Forms to Sharepoint
	Gravity Forms Power Automate connector
	Contact Form 7 Power Automate connector

block

Search
Search

Read more

AI

API

App

Bug Fix

Change Management

Conference

Copilot

CRM

Dynamics 365

Guest Content

Ideas

Innovation

Licensing

Microsoft Teams

Mobile

Power Automate

Best Practice TM

Connectors

PowerApps

Products

Rescue

Software

Technology

Uncategorized

User Adoption

Viva Sales

Tags

AI
automation
canvas app
cloudmersive
connector
connectors
connector update
copilot
crm
custom controls
d365 ui
Dataverse
document conversion
document generation
document management
document signing
dynamics 365
flow
forms
gravity forms
human resources
Independent Publisher
independent publisher connectors
marketing automation
microsoft
microsoft teams
model-driven app
new connectors
pdf
Power Apps
powerapps
power automate
power automate connectors
power platform
project management
security
sharepoint
SMS
system administrator
task management
teams
ui controls
user adoption
weather
wordpress

custom_html

Reenhanced LLC; 2455 Swamp Creek Road; Green Lane, PA 18054.

Call us at 215-804-9408

